
Hall

N 3-175 2 ,
Interactive Specification Acquisition via Scenarios:

A Proposal

' Abstract

Some reactive systems are most naturally specified
by giving large collections of behavior scenarios.
These collections not only specify the behavior of
the system, but also provide good test suites for
validating the implemented system. Due to the
complexity of the systems and the number of sce-
narios, however, it appears that automated assis-
tance is necessary to make this software develop-
ment process workable. ISAT is a proposed inter-
active system for supporting the acquisition and
maintenance of a formal system specification from
scenarios, as well as automatic synthesis of control
code and automated test generation. This paper
discusses the background, motivation, proposed
functions, and implementation status of ISAT.

Note: This work is still in its early stages; com-

ments, criticisms, and literature pointers are not
only welcomed, but actively sought.

Background and Motivation

Some reactive systems, such as telephone switches and
other control systems, seem to be most naturally spec-
ified informally by giving a set of behavior scenarios,
consisting of interleaved sequences of applied stimuli
and verified system responses. Here is such a scenario
from the domain of telephone switches:

Assumptions: X, Y, and Z are idle stations.

Stimulus: Y activates Call Forwarding to Z.
Response: Y receives a confirmation tone.

Stimulus: Place a call from X to Y.

Response: Y receives a redirect notification.
Response: Z rings.

Stimulus: Z answers the call.

Response: X and Z are connected.

A comprehensive collection of these scenarios forms
both an informal system specification and a suite of

Robert J. Hall

AT&T Bell Laboratories

600 Mountain Ave.

Murray Hill, New Jersey 07974-0636

hall@allegra.att.com

system tests. There are, however, several major prob-
lems with incorporating this specification and testing
technique into a software development process:

..... many scenarios. For systems as complex as
modern phone switches, for example, there are too
many scenarios (typically many thousands) for the
entire suite to be manually executed even once per

software release (of which there may be many per
year). Furthermore, if bugs are found during an ex-
ecution of the scenarios, there is no time to go back
and revalidate each bug fix.

• Ambiguity. Informal English descriptions can be am-
biguous. For example, the scenario above does not
specify the technique that Y must use to activate
Call Forwarding, but some such techniques may not
result in a confirmation tone. Thus, the outcome
of the test execution can be dependent on how the

ambiguity is resolved.

• Inaccuracy. Informal English descriptions can be in-
correct. For example, the default administration of
stations dictates that they do not receive redirect no-
tifications unless this feature is explicitly activated.
Thus, the scenario above will fail, unless the tester

inserts the missing administration step.

,* Consistency Maintenance. It is difficult for humans
to maintain the mutual consistency of these scenario
sets as the system evolves over time, and the devel-

opers come and go. For example, an early scenario
may specify that a call to a busy station is denied,
with the caller receiving a busy signal; subsequently,
the system may be changed so that a later scenario
specifies that a call to a busy station is redirected to
an automated answering feature. This change causes
the first scenario to fail in system test.

• Testing Pragmatics. In running a batch of system
tests sequentially, it is crucial that one test leave
the stations in a known "default" state, so that sub-

sequent tests' initial assumptions are satisfied. The
scenario above violates this felicity condition by leav-

ing Call Forwarding activated and leaving X, Y, and
Z offhook. Thus, a batch test run can fail, even

6O

Hall

though the software is really correct, simply because
of the ordering of the tests.

A First Try: KITSS

In the KITSS project (Nonnenmann and Eddy, 1992), 1
the goal is to ameliorate these problems by translat-
ing from English into a formal test script language
which can be automatically executed on a system test
harness. KITSS operates in the domain of telephone
switch software, using a knowledge-based domain rea-
soner that both assists in the translation and audits the

scripts for consistency with a domain model. KITSS has
the potential to help with all of the problems noted
above: the translation process disambiguates the in-
put, using sophisticated reference resolution and prag-
matic reasoning, as well as a library of domain plans.
Next, the auditing phase maintains consistency with
the domain model and detects inconsistencies result-

ing from inaccurate scenarios. Finally, a planner uses
domain knowledge to repair incomplete plans and to
restore the system state at the ends of scenarios.

While it is beyond the scope of this paper tO analyze
all of the successes and failures of the KITSS project,
I believe there are several lessons of the project with

direct impact on this proposal.
The reasoner's model cannot be static. One basic

assumption of KXTSS is that there is a highly com-
plete and virtually static domain model that can be
built once and changed only very slowly. If this were
true, then the effort of building this model could be
amortized over all applications of the system. Unfor-
tunately, change seems to be the rule rather than the
exception. In one case study of only the knowledge re-
quired to support the natural language semantics mod-
ule, I calculated that I had to add (or change) roughly
one knowledge unit _ for every five sentences processed
successfully. This was measured in adding the knowl-

edge required to allow the system to correctly translate
all sentences of 38 scenarios (roughly 400 sentences).
Moreover, the frequency of knowledge addition was
not "converging" as the test coverage grew. The sim-
ple reason is that broader coverage means new things
to talk about and new ways of talking about things.
While this is hardly a definitive study, it is neverthe-
less suggestive that the domain model will constantly

undergo evolution, rather than remaining fixed.
Experience with other KITS$ system modules_ such

as the automated reasoner and the natural language

parser, indicates this phenomenon applies to them as

1KITSS was reported on in last year's Workshop (Non-
nenmann and Eddy, 1991) as well.

2A "knowledge unit" is a qualitative unit of effort de-
fined with respect to the knowledge formalisms employed
in the KITSS system. Its key properties are that it must
be added manually to the system by a relative expert in
the domain model, and each knowledge unit is of roughly
the san'he complexity to add (as measured by the time to
discover and add it).

well. Each time a system release includes a new fea-
ture, the reasoner's domain model must be extensively
updated to allow for it. Even if no new feature is added
in a release, it is typical that some aspect of the spec-
ified behavior is either changed or simply better de-
fined. Commonly, unanticipated feature interactions
need to be defined or repaired; for example, it may be

necessary to change what happens if a Priority Call is
placed to a station with Call Forwarding active, since
such calls are not treated as normal calls. Of all KITSS
modules, only the natural language parser (Jones and

Eisner, 1992) has addressed the issue of automating
the acquisition process.

The natural language semantics problem is too hard.
At the start of the KITSS project, it was believed that

the natural language used in writing the scripts was
constrained enough to make possible automatic under-
standing. While this seems to be true for the syntactic
aspects of the English used (Jones and Eisner, 1992),
it appears that the semantic aspects are wildly uncon-
strained, with sentence styles varying from simple and
action-centered to elliptic, imprecise, inaccurate, sub-

junctive, and even metaphorical. An example is

Station B2 wants to talk privately with Station

B1, so presses the Consult button.

This is elliptic, in that the second half of the com-

pound sentence leaves out who is pressing the button.
It is metaphorical in that stations cannot really have
desires, and cannot really talk. To fully handle phe-
nomena such as metaphor and ellipsis, a system must
have a great deal of pragmatic, common sense knowl-
edge. It is well known that the problem of common
sense knowledge is extremely difficult. A result of this
observation is that we cannot depend on perfection in

the natural language component, so an interactive in-
terface is required that makes it possible for the user
to examine each translation and repair it as necessary.

The benefits of imperfect natural language processing
may not justify the knowledge and processing costs. In
another informal study, I used KITSS to translate 14
test cases. I did this in two ways: first, by having the

natural language component try to translate the sen-
tence and only repairing those sentences inaccurately
or not translated; and second, by simply manually typ-

ing the translation essentially directly into the logical
language used by the domain reasoner. The session
which used the natural language component required
47 minutes, while the session without only required 49
minutes. The key reasons for this, I believe, are that
(1) the translation is usually extremely easy to find
for someone familiar with the logical language, and (2)
the processing time in the domain reasoner was large

enough that there was plenty of time for the human
reasoner to think about the paraphrase in parallel with

this processing.

61

Hall

A New Approach: ISAT

The subject of this proposal is a new tool called ISAT,
for Interactive Specification Acquisition Tool. The
first point of departure with KITSS is to acknowledge
the model acquisition and maintenance problem as the
overriding problem. This has impact throughout the
tool's design, starting with a different role for the user.
Whereas in KITSS the user's task is knowledge-assisted
translation of scenarios, given a static system and do-
main model, the ISAT user's task is to synthesize a sys-
tem model (specification) which is consistent with the
scenarios. Translation of the scenarios into automated

test scripts is a by-product of this process, rather than
the primary goal. Thus, whereas the users of KITSS are
system testers, the users of ISAT are the developers and
designers of the system. Of course, the testers still ben-
efit from fully automated and maintainable test scripts.

Note that there is a subtle difference between KITSS's

domain model and ISAT'S system model. The domain
model in KITSS has evolved into a collection of con-

straints, plans, and inference rules. It is not, however,
a predictive model of the switch, as this would require
completeness. Such completeness is impossible to at-
tain in a system with a fixed domain model. Thus,
KITSS is capable only of checking certain aspects of
scenario consistency, and uses plan recognition to fill
in missing scenario steps.

By contrast, ISAT'S system model is assumed to be
predictive. It must be complete enough to predict all
observations in all scenarios. Whenever there is an
unpredicted observation or an inconsistency, the user
must fix either the scenario or the model. By design-
ing ISAT for maintainability, however, this is accept-
able. Note that I will use the terms "specification" and

"system model" interchangeably throughout to denote
a predictive model of the stimulus/response behavior
of the target software.

One might wonder why it should be possible to ac-
quire such a specification from the user, since tradi-
tionally software specifications have been extremely
difficult to produce. There are two answers to this
question. First, the goal is to acquire a behavioral, in-
put/output specification of the system similar to what
one might find in a user's manual for the target sys-
tem. Since, for example, there are those who claim to
understand how to use their phones, we might expect
this level of specification to be much simpler than a
full specification of the switch software itself. A full
specification would include far more detail than is nor-
mally seen by a user, such as constraints imposed by
hardware resources. Second, in the ISAT project I am

not requiring a complete and accurate specification up
front. Instead, the specification is fundamentally an
evolving entity which undergoes continuous, but con-
trolled, change. By designing for maintainability, and
supporting automatic code synthesis (see below), ISAT

sidesteps the difficulties of full specification.
In view of the observations above about natural Inn-

guage processing, ISAT will not accept English input;
rather, it will accept formal input only. Thus, each
scenario must be manually transcribed into a formal

stimulus/response language. Furthermore, the system
model itself will be expressed in a formal rule language
with a clear semantics.

I believe that this problem redefinition, even though
it places a larger burden on the user, allows much
more leverage on the testing and maintenance prob-
lems. The next section will discuss in detail the ben-

efits which I believe should accrue from this change.
Broadly speaking, ISAT (like KITSS) is an apprentice
system, i.e. one which assists engineers in doing a task
by automating the routine subtasks and tracking as
many details as possible. Examples of this paradigm in
the literature abound: the LEAP system (Mitchell, et
al, 1985) was an apprentice VLSI design assistant, and
the MIT Programmer's Apprentice Project (Rich and
Waters, 1990) supported research on many different
apprentice systems, such as KBEmacs, the Design Ap-
prentice, and the Requirements Apprentice (Reuben-
stein, 1990).

Proposed Tool Functions

Through an extended interactive dialog, augmented by
batch-mode processing of various subtasks, the system
supports the user in constructing a predictive model
of target system behavior that is complete enough to
predict every response in every test scenario. With
such a model, several important software development
tasks can be carried out. The primary functions of the
proposed ISAT apprentice system are given here and
discussed in more detail below.

• Scenario checking. Verify that each response in a

given scenario is predicted by the model, given the
assumptions and stimuli in the scenario.

• Model Maintenance. Control and analyze a user's

changes to the system model, performing impact
analysis and regression testing to ensure that such
changes are consistent with all known scenarios.
Provide diagnostics and explanations when conflicts
arise.

• Automatic Programming. At any time when the sys-
tem model is known to be consistent with the scenar-

ios, compile the model into an efficiently executable
control module for the target system.

*-Generation of Automated Test Scrip_s. Put out

scripts in the low-level executable form necessary for
execution on a test harness. This includes filling in

missing steps necessary to leaving the system in the
default state, error recovery, etc. (This is essentially

the KITSS task.)

• Test Suite Enhancement. Fill in individual scenarios

with additional response verifications that were left
out of the input scripts, based on the predictions
of the model. Possibly suggest additional scenarios

62

Hall

for testing known gaps in scenario coverage, such as
model rules that are never fired or state variables

that never change.

Scenario Checking

The fundamental mode of interaction in acquiring the
model is for the user to present a scenario to the sys-
tem, which the system then "simulates" using its cur-

rent system model (represented in a simple pattern-
action rule form based on a simple notion of state).
The system then informs the user whether the behav-
ior specified by the scenario is successfully predicted by
the system's model. Exceptional conditions are raised
when any of the following conditions arise:

• a response specified by the user contradicls some de-
duced consequence of the system's model,

• a response specified by the user, though not contra-
dictory, fails to be predicted by the system's model
(indicating possible incompleteness of the model),

• a stimulus applied by the user is deduced to be illegal
in the system's current state

• the system model reaches an inconsistent internal
state (which may not be observable as a system re-
sponse in the scenario).

Whenever such an exception arises, it could be due
either to an incomplete or inaccurate system model
held by the system, or to an incomplete or inaccurate
scenario presented by the user. Thus, the first impor-
tant automated facility of the ISAT system is the ability

to fully explain any deduced state condition. This ex-
planation is presented in terms of the pattern-action
rules constituting the system's model and the scenario
stimuli and configurational information given by the
user. The user can then use this explanation to isolate
the difficulty, resulting in either changing the scenario
definition or fixing the model.

Note that this explanation facility hinges on a key
property of reactive system control software: each
event results in a relatively small number of internal

state changes. This allows us to construct a fully ex-
plained and complete execution trace of the system
model on a given scenario input. This property does
not hold true of other types of software, such as data
processing software, compilers, etc. They typically
have enormous traces, involving millions of internal
states. It is practically impossible to build and query
a complete trace of such a system.

Another function potentially performed by the
checker is to compare the final state of a scenario with
the assumed default initial state of all scenarios. ISAT

can then point out when the state is left in a non-
default state, and even assist in planning some steps
for correcting it.

_ =

Model Maintenance

If the difficulty lies in the system's model, the user

must decide how to repair the model. Usually, for any

given model repair, the biggest difficulty lies in un-
derstanding how the proposed change will effect the
correctness of the system on oiher scenarios. That is,
does this fix break anything that worked before?

In ISAT, this is not a problem because of our insis-
tence on complete explainability. In principle, each sce-
nario can be re-checked; any that no longer complete
successfully provide full explanations of why they fail,
allowing the user to quickly locate the unintended in-
teractions. In practice, we can speed up this process by
orders of magnitude for small model changes by exam-
ining the justification structures built up in originally
checking them; a small model change will not effect
many scenarios, so this checking can quickly determine
that the original structure still applies (this is analo-

gous to the difference between deriving a proof and
checking an existing proof). In my experiments with
the current prototype of ISAT, this simplified impact
analysis is roughly 40 times faster (for localized model
changes) than a full recheck of all scenarios would be.

The above technique applies to changes in model
rules; I anticipate there will be analogous protocols
for dealing with other types of model changes, such
as changing the types of model functions, adding and

deleting state variables, etc.

Automatic Programming

Since the system model is predictive, it can serve as
a controller for the target system, assuming the hard-
ware and low-level primitives support the stimulus and
response primitives directly. Specifically, I assume that
the system substrate can be coded to supply typed
interrupts when sensors indicate the presence of real
stimuli (such as when a button is pressed, or a phone
goes offhook). I also assume that the substrate sup-
ports actuators for each of the observable signals de-
duced by the system model (such as a status lamp
lighting or a tone being emitted). Given this substrate,
which may or may not exist in current day designs, we
can synthesize a controller by essentially treating the
sensor interrupts as stimulus statements in a scenario.
Then, when the system model computes the next ob-
servable system state, the changed observables are sent
as updates to the actuators.

The only difficulty with this direct approach is the
efficiency of the controller: even if there are no hard
real time constraints (which there may be), large sys-
tems like phone switches must handle many interrupts

per second to be usable. Fortunately, I believe it should
be quite possible to compile the system's model into an
extremely efficient program. The run-time system need
not track rule justifications, and rule chains can be pre-
computed at compile time. Thus, the event handlers
for the system at run-time needn't do term matching,

justification construction, or consistency computation.
Note that there are several benefits to this automatic

programming approach.

• Initial Coding is fast. This is because the control

63

Hall

part is generated from the system model automati-
cally. Because of the extremely simple model of com-
putation in the system and the limited domain, I hy-
pothesize that this automatic programming problem
can be fully automated.

• Subsequent releases are relatively painless. In many
domains, new system releases tend to involve mostly
changes to the high-level control, rather than the
sensor-actuator substrate. Thus, future releases can
be produced by first getting them correctly reflected
in the ISAT system model and then automatically
regenerating the controller, leaving the system sub-
strate the same.

• Bugfizing turnaround is fast. Another benefit lies in
debugging the actual system. If a user calls up with
a bug report, it can be simulated in ISAT'S model, to

see if it is replicated there. If it is not, then the bug
is localized to the sensor-actuator substrate. More

likely, however, is that the bug is manifested in the
model, where the full explanation facilities of ISAT al-
low quick localization, fixing, and regression check-
ing. This can potentially lead to extremely rapid
turnaround for bug fixing. Note that quick bug lo-
calization based on querying scenario traces depends
on the special properties assumed of this class of re-
active control systems.

Even though I believe the automatic programming
task in this domain is tractable, challenges remain. For
example, compiling arbitrary rule patterns into effi-
cient code is still challenging. For example, when a
rule's condition contains the pattern (connected I ?y),
the naive compilation performs a linear search among
all stations to see which are connected to B1. It would

be desirable to compile this into a hash-table based
representation of the set of connected stations to X.

There is much existing research on this and related
compilation problems, however.

Generation of Automated Scripts

The challenge here is to translate from the high-level
stimulus and response statements appearing in the sce-
narios into the particular low-level language used by
the test harness. This will involve two steps. First,
each high-level step, such as "Activate Call Forwarding
from Station X to Station Y" must have one or more

componnd action methods defined telling the system
how to translate it into a sequence of primitive stim-
uli understood by the system. I believe this is prop-
erly part of the system model acquired from the user.
The final step is to do a more-or-less standard compi-
lation step from the event primitives in the model into
the language of the test harness. The event primitives
should be designed to make this relatively easy.

Note that the checking phase of ISAT is presumed to
have already made sure that each scenario leaves the
system in a known default state.

Test Suite Enhancement

There are two different types of enhancement that ISA, T

can easily perform: first, each single scenario can be
"filled out" with missing observations, to increase con-
fidence in the proper working of the switch. It can do
this based on the predictions of its model. For example,
it might insert checks for dial tone after each off-hook
operation. Of course, we must be careful not to bog
down the scenarios in endless checking of details, since
there are so many to execute on the test harness.

The second type of enhancement is to the coverage
of the suite as a whole. If a model rule is never fired in
any scenario, this probably indicates that one or more

scenarios should be created to exercise it. (Otherwise,
why would the user put it in?) Similarly, if a certain
type of state variable either always has the same value
or is never determined in all scenarios, scenarios should
be created to see if it is possible to cause a change. At
the very least, these types of conditions can be brought
to the user's attention. More ambitiously, the system
can do goal-based planning to try to bring about the

conditions necessary to firing the rule or changing the
variable's value.

Implementation Strategies

To date, I have implemented an initial prototype
demonstrating some of ISAT's capabilities. In particu-
lar, the system can check scenarios and perform impact

analysis for individual rule changes. It can also emit
low-level streams of stimulus/response statements as
the first step in producing automated scripts. I have
used ISAT to build several different models of different

combinations of telephone switch features. The most

complex is a model that layers Priority Calling and
Call Forwarding on top of Plain Old Telephone Ser-
vice for multiple call-appearance phone stations. Since
this model acquisition was done in parallel with ISAT
implementation, it is premature to attempt to gauge
how well I was supported in this by ISAT. I have used
the model to successfully check 17 scenarios taken from
actual pre-existing AT&T system test documents.

The formalism I've adopted is based on simple
pattern-action rules used to form partial descriptions
of state transitions.

if (CALL-STATE (CA ?X ?N)) - :IDLE, and
(SELECTED-CA ?X) - (CA ?X ?N), and
(HOOK} ?X :OFF) = :TRUE,

then (CALL-STATE (CA ?X ?N)) = :PRE-DIALIHO

This rule says that if call appearance number ?N at
station ?X is idle and is the selected appearance of
?X and ?X goes offhook, then in the next system
state the CALL-STATE of that appearance is ":PRE-

DIALING". There are two types of model rules: state
change rules, like the above, are used in a "forward"
manner; that is, they are executed to quiescence after
each stimulus event is applied. Demand rules, like

64

Hall

if (CALL-STATE (CA ?X ?N)) - :DENIED, and
(SELECTED-CA ?X) - (CA ?X ?N), and

(0NHOOK? ?X) = :FALSE

then (RECEIVED-TONE ?X) =. :BUSY-TONE

are only used when a response event asks about one or
more of the predicates in the rule's conclusion. Thus,
the above rule will only be used when the scenario
executes an observation of the received-tone of some

station. Demand rules _re oecessary so that the sys-

problem head-on, I believe many major benefits are
achievable, such as specification acquisition and main-
tenance, automatic synthesis of control systems, test

enhancement, and automated script compilation. An
initial prototype of ISAT is currently under construc-
tion, with several of the main functions implemented.
It has been tested on several scenarios from a "real

world" application.

tem need not forward chain-to deduce a large number Acknowledgements
of observations that won't be used in a given state.

This proposal has grown out of work on the KITSS
For example, there are quadratically many potential
connections between stations, but by making the ob-
servable connected predicate only deduced on demand,
the model can execute in linear time.

Note that, unlike state rules, the demand rules do
not chain arbitrarily. They are used only one level
deep. This makes the system's efficiency much more
predictable, and I have found it no significant restric-
tion in expressive power.

ISAT deals with the classical AI frame problem (how
to consistently carry forward unchanged facts when a

small aspect of the state changes) by distinguishing
different declared ontological statuses of terms. Any
term consisting of an application of a function declared
:PERSISTENT by the user has its old value brought for-
ward, unless an explicit contradiction is deduced by
a rule firing. Any non-persistent terms must be red-
educed in each state. Most such terms are deduced

by demand rules, though, so they do not incur a large
unnecessary cost.

Because of the extremely simple formalism and se-
mantics, the current prototype is able to support sev-
eral useful explanation functions. Of course, it can
answer (WHY? <fact> <state>) by simply giving the ex-
plicitly maintained justification in terms of rule appli-
cations, external inputs, etc. Another extremely use-
ful capability is the ability to answer (WHY-NOT? <fact>

project at AT&T Bell Labs. I have learned a great deal
from this project and the people involved with it: Van
Kelly, Mark Jones, ffohn Eddy, and Uwe Nonnenmann.
Some of the ideas and opinions expressed in this paper
are clearly derived from the conceptual foundation of
KITSS. However, I make no claim as to whether the
individual project members (except me) agree with the
specific opinions expressed here.

, References

Jones, M.A.; and Eisner, 3.M. 1992. A probabilistic

parser applied to software testing documents. In Pro-
ceedings of the Tenth National Conference on Artificial
Intelligence. Cambridge, MA: MIT Press.

Mitchell, T.; Mahadevan, S.; and Steinberg, L. 1985.
LEAP: A learning apprentice for VLSI Design, In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence, vol 1, pp 573-580. Los Altos,
CA: Morgan Kaufmann.

Nonnenmann, U.; and Eddy, J.K. 1992. KITSS - A
functional software testing system using a hybrid do-
main model. In Proceedings of the Eighth IEEE Con-
ference on Artificial Intelligence Applications. Mon-
tery, CA: IEEE.

<state>). Obviously, in its most general form, this
is too open-ended to be meaningful; but in the con- _onnenmann, U:; and Eddy, J.K. 1991. KITSS - To-
text of ISAT this is interpreted to mean the following.
First, tell me any contradictory facts (optionally ex-
plaining them); then, tell me all the rules that could
have deduced the fact and tell me why they didn't
fire (by telling me which of their conditions are not
satisfied). This has been very useful in building the
models I have already built. An analogous facility is
(METHODS? <action statement> <state>), which gives a
description of which compound action methods apply

in the state for the given compound action application,
and which fail to apply and why.

ward software design and testing integration. In Pro-
ceedings of the AAAI-91 workshop: Automating Soft'
ware Design: Interactive Design. AAAI.

Reubenstein, H. 1990. Automated Acquisition of
Evolving Informal Descriptions, Technical Report, AI-
TR-1205. M.I.T. Artificial Intelligence Laboratory.

Rich, C.; and Waters, R. 1990. The Programmer's

Apprentice, New York, NY: ACM Press.

Summary

The proposed tool, ISAT, is a software development tool
environment for reactive control systems, such as tele-
phone switch software. It is motivated by, and builds
on lessons learned from, the KITSS project. By redefin-
ing the problem and meeting the model acquisition

65

